Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Emerg Infect Dis ; 29(4): 814-817, 2023 04.
Article in English | MEDLINE | ID: covidwho-2288405

ABSTRACT

We compared serial intervals and incubation periods for SARS-CoV-2 Omicron BA.1 and BA.2 subvariants and Delta variants in Singapore. Median incubation period was 3 days for BA.1 versus 4 days for Delta. Serial interval was 2 days for BA.1 and 3 days for BA.2 but 4 days for Delta.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Singapore/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology , Infectious Disease Incubation Period
2.
J Med Virol ; 95(3): e28648, 2023 03.
Article in English | MEDLINE | ID: covidwho-2261603

ABSTRACT

In January 2022, the SARS-CoV-2 Omicron variants initiated major outbreaks and dominated the transmissions in Hong Kong, displacing an earlier outbreak seeded by the Delta variants. To provide insight into the transmission potential of the emerging variants, we aimed to compare the epidemiological characteristics of the Omicron and Delta variants. We analyzed the line-list clinical and contact tracing data of the SARS-CoV-2 confirmed cases in Hong Kong. Transmission pairs were constructed based on the individual contact history. We fitted bias-controlled models to the data to estimate the serial interval, incubation period and infectiousness profile of the two variants. Viral load data were extracted and fitted to the random effect models to investigate the potential risk modifiers for the clinical viral shedding course. Totally 14 401 confirmed cases were reported between January 1 and February 15, 2022. The estimated mean serial interval (4.4 days vs. 5.8 days) and incubation period (3.4 days vs. 3.8 days) were shorter for the Omicron than the Delta variants. A larger proportion of presymptomatic transmission was observed for the Omicron (62%) compared to the Delta variants (48%). The Omicron cases had higher mean viral load over an infection course than the Delta cases, with the elder cases appearing more infectious than the younger cases for both variants. The epidemiological features of Omicron variants were likely an obstacle to contact tracing measures, imposed as a major intervention in settings like Hong Kong. Continuously monitoring the epidemiological feature for any emerging SARS-CoV-2 variants in the future is needed to assist officials in planning measures for COVID-19 control.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Infectious Disease Incubation Period , Disease Outbreaks , Seizures
3.
Front Med (Lausanne) ; 9: 1079842, 2022.
Article in English | MEDLINE | ID: covidwho-2238309

ABSTRACT

Objective: This study uses four COVID-19 outbreaks as examples to calculate and compare merits and demerits, as well as applicational scenarios, of three methods for calculating reproduction numbers. Method: The epidemiological characteristics of the COVID-19 outbreaks are described. Through the definition method, the next-generation matrix-based method, and the epidemic curve and serial interval (SI)-based method, corresponding reproduction numbers were obtained and compared. Results: Reproduction numbers (R eff ), obtained by the definition method of the four regions, are 1.20, 1.14, 1.66, and 1.12. Through the next generation matrix method, in region H R eff = 4.30, 0.44; region P R eff = 6.5, 1.39, 0; region X R eff = 6.82, 1.39, 0; and region Z R eff = 2.99, 0.65. Time-varying reproduction numbers (R t ), which are attained by SI of onset dates, are decreasing with time. Region H reached its highest R t = 2.8 on July 29 and decreased to R t < 1 after August 4; region P reached its highest R t = 5.8 on September 9 and dropped to R t < 1 by September 14; region X had a fluctuation in the R t and R t < 1 after September 22; R t in region Z reached a maximum of 1.8 on September 15 and decreased continuously to R t < 1 on September 19. Conclusion: The reproduction number obtained by the definition method is optimal in the early stage of epidemics with a small number of cases that have clear transmission chains to predict the trend of epidemics accurately. The effective reproduction number R eff , calculated by the next generation matrix, could assess the scale of the epidemic and be used to evaluate the effectiveness of prevention and control measures used in epidemics with a large number of cases. Time-varying reproduction number R t , obtained via epidemic curve and SI, can give a clear picture of the change in transmissibility over time, but the conditions of use are more rigorous, requiring a greater sample size and clear transmission chains to perform the calculation. The rational use of the three methods for reproduction numbers plays a role in the further study of the transmissibility of COVID-19.

4.
J Med Virol ; : e28248, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2241186

ABSTRACT

With increased transmissibility and novel transmission mode, monkeypox poses new threats to public health globally in the background of the ongoing COVID-19 pandemic. Estimates of the serial interval, a key epidemiological parameter of infectious disease transmission, could provide insights into the virus transmission risks. As of October 2022, little was known about the serial interval of monkeypox due to the lack of contact tracing data. In this study, public-available contact tracing data of global monkeypox cases were collected and 21 infector-infectee transmission pairs were identified. We proposed a statistical method applied to real-world observations to estimate the serial interval of the monkeypox. We estimated a mean serial interval of 5.6 days with the right truncation and sampling bias adjusted and calculated the reproduction number of 1.33 for the early monkeypox outbreaks at a global scale. Our findings provided a preliminary understanding of the transmission potentials of the current situation of monkeypox outbreaks. We highlighted the need for continuous surveillance of monkeypox for transmission risk assessment.

5.
Front Public Health ; 10: 933075, 2022.
Article in English | MEDLINE | ID: covidwho-2215404

ABSTRACT

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.617.2 (also named the Delta variant) was declared as a variant of concern by the World Health Organization (WHO). This study aimed to describe the outbreak that occurred in Nanjing city triggered by the Delta variant through the epidemiological parameters and to understand the evolving epidemiology of the Delta variant. Methods: We collected the data of all COVID-19 cases during the outbreak from 20 July 2021 to 24 August 2021 and estimated the distribution of serial interval, basic and time-dependent reproduction numbers (R0 and Rt), and household secondary attack rate (SAR). We also analyzed the cycle threshold (Ct) values of infections. Results: A total of 235 cases have been confirmed. The mean value of serial interval was estimated to be 4.79 days with the Weibull distribution. The R0 was 3.73 [95% confidence interval (CI), 2.66-5.15] as estimated by the exponential growth (EG) method. The Rt decreased from 4.36 on 20 July 2021 to below 1 on 1 August 2021 as estimated by the Bayesian approach. We estimated the household SAR as 27.35% (95% CI, 22.04-33.39%), and the median Ct value of open reading frame 1ab (ORF1ab) genes and nucleocapsid protein (N) genes as 25.25 [interquartile range (IQR), 20.53-29.50] and 23.85 (IQR, 18.70-28.70), respectively. Conclusions: The Delta variant is more aggressive and transmissible than the original virus types, so continuous non-pharmaceutical interventions are still needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Bayes Theorem , China/epidemiology
6.
Med J Islam Repub Iran ; 36: 155, 2022.
Article in English | MEDLINE | ID: covidwho-2206567

ABSTRACT

Background: The World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) outbreak to be a public health emergency and international concern and recognized it as a pandemic. This study aimed to estimate the epidemiologic parameters of the COVID-19 pandemic for clinical and epidemiological help. Methods: In this systematic review and meta-analysis study, 4 electronic databases, including Web of Science, PubMed, Scopus, and Google Scholar were searched for the literature published from early December 2019 up to 23 March 2020. After screening, we selected 76 articles based on epidemiological parameters, including basic reproduction number, serial interval, incubation period, doubling time, growth rate, case-fatality rate, and the onset of symptom to hospitalization as eligibility criteria. For the estimation of overall pooled epidemiologic parameters, fixed and random effect models with 95% CI were used based on the value of between-study heterogeneity (I2). Results: A total of 76 observational studies were included in the analysis. The pooled estimate for R0 was 2.99 (95% CI, 2.71-3.27) for COVID-19. The overall R0 was 3.23, 1.19, 3.6, and 2.35 for China, Singapore, Iran, and Japan, respectively. The overall serial interval, doubling time, and incubation period were 4.45 (95% CI, 4.03-4.87), 4.14 (95% CI, 2.67-5.62), and 4.24 (95% CI, 3.03-5.44) days for COVID-19. In addition, the overall estimation for the growth rate and the case fatality rate for COVID-19 was 0.38% and 3.29%, respectively. Conclusion: The epidemiological characteristics of COVID-19 as an emerging disease may be revealed by computing the pooled estimate of the epidemiological parameters, opening the door for health policymakers to consider additional control measures.

7.
Infect Dis Model ; 7(3): 473-485, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1966617

ABSTRACT

In this study, we determine and compare the incubation duration, serial interval, pre-symptomatic transmission, and case fatality rate of MERS-CoV and COVID-19 in Saudi Arabia based on contact tracing data we acquired in Saudi Arabia. The date of infection and infector-infectee pairings are deduced from travel history to Saudi Arabia or exposure to confirmed cases. The incubation times and serial intervals are estimated using parametric models accounting for exposure interval censoring. Our estimations show that MERS-CoV has a mean incubation time of 7.21 (95% CI: 6.59-7.85) days, whereas COVID-19 (for the circulating strain in the study period) has a mean incubation period of 5.43(95% CI: 4.81-6.11) days. MERS-CoV has an estimated serial interval of 14.13(95% CI: 13.9-14.7) days, while COVID-19 has an estimated serial interval of 5.1(95% CI: 5.0-5.5) days. The COVID-19 serial interval is found to be shorter than the incubation time, indicating that pre-symptomatic transmission may occur in a significant fraction of transmission events. We conclude that during the COVID-19 wave studied, at least 75% of transmission happened prior to the onset of symptoms. The CFR for MERS-CoV is estimated to be 38.1% (95% CI: 36.8-39.5), while the CFR for COVID-19 1.67% (95% CI: 1.63-1.71). This work is expected to help design future surveillance and intervention program targeted at specific respiratory virus outbreaks, and have implications for contingency planning for future coronavirus outbreaks.

8.
J Clin Med ; 11(12)2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1953622

ABSTRACT

Epidemiological distributions of the coronavirus disease 2019 (COVID-19), including the intervals from symptom onset to diagnosis, reporting, or death, are important for developing effective disease-control strategies. COVID-19 case data (from 19 January 2020 to 10 January 2022) from a national database maintained by the Korea Disease Control and Prevention Agency and the Central Disease Control Headquarters were analyzed. A joint Bayesian subnational model with partial pooling was used and yielded probability distribution models of key epidemiological distributions in Korea. Serial intervals from before and during the Delta variant's predominance were estimated. Although the mean symptom-onset-to-report interval was 3.2 days at the national level, it varied across different regions (2.9-4.0 days). Gamma distribution showed the best fit for the onset-to-death interval (with heterogeneity in age, sex, and comorbidities) and the reporting-to-death interval. Log-normal distribution was optimal for ascertaining the onset-to-diagnosis and onset-to-report intervals. Serial interval (days) was shorter before the Delta variant-induced outbreaks than during the Delta variant's predominance (4.4 vs. 5.2 days), indicating the higher transmission potential of the Delta variant. The identified heterogeneity in region-, age-, sex-, and period-based distributions of the transmission dynamics of COVID-19 will facilitate the development of effective interventions and disease-control strategies.

9.
J Clin Med ; 11(14)2022 Jul 06.
Article in English | MEDLINE | ID: covidwho-1917564

ABSTRACT

Pre-symptomatic transmission potentially reduces the effectiveness of symptom-onset-based containment and control strategies for the coronavirus disease (COVID-19). Despite evidence from multiple settings, the proportion of pre-symptomatic transmission varies among countries. To estimate the extent of pre-symptomatic transmission in South Korea, we used individual-level COVID-19 case records from the Korea Disease Control and Prevention Agency and Central Disease Control Headquarters. We inferred the probability of symptom onset per day since infection based on the density distribution of the incubation period to stratify the serial interval distribution in Period 1 (20 January-10 February 2020) and Period 2 (25 July-4 December 2021), without and with expanded testing or implementation of social distancing strategies, respectively. Assuming both no correlation as well as positive and negative correlations between the incubation period and the serial interval, we estimated the proportion of pre-symptomatic transmission in South Korea as 43.5% (accounting for correlation, range: 9.9-45.4%) and 60.0% (56.2-64.1%) without and with expanded testing, respectively, during the Delta variant's predominance. This study highlights the importance of considering pre-symptomatic transmission for COVID-19 containment and mitigation strategies because pre-symptomatic transmission may play a key role in the epidemiology of COVID-19.

10.
Emerg Infect Dis ; 28(8): 1699-1702, 2022 08.
Article in English | MEDLINE | ID: covidwho-1902888

ABSTRACT

We investigated the serial interval for SARS-CoV-2 Omicron BA.1 and Delta variants and observed a shorter serial interval for Omicron, suggesting faster transmission. Results indicate a relationship between empirical serial interval and vaccination status for both variants. Further assessment of the causes and extent of Omicron dominance over Delta is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/virology , Humans , SARS-CoV-2/genetics , Vaccination/statistics & numerical data
11.
Euro Surveill ; 27(6)2022 02.
Article in English | MEDLINE | ID: covidwho-1883863

ABSTRACT

The SARS-CoV-2 Omicron variant has a growth advantage over the Delta variant because of higher transmissibility, immune evasion or shorter serial interval. Using S gene target failure (SGTF) as indication for Omicron BA.1, we identified 908 SGTF and 1,621 non-SGTF serial intervals in the same period. Within households, the mean serial interval for SGTF cases was 0.2-0.6 days shorter than for non-SGTF cases. This suggests that the growth advantage of Omicron is partly due to a shorter serial interval.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Netherlands
12.
Euro Surveill ; 27(15)2022 04.
Article in English | MEDLINE | ID: covidwho-1869325

ABSTRACT

BackgroundHouseholds appear to be the highest risk setting for COVID-19 transmission. Large household transmission studies in the early stages of the pandemic in Asia reported secondary attack rates ranging from 5 to 30%.AimWe aimed to investigate the transmission dynamics of COVID-19 in household and community settings in the UK.MethodsA prospective case-ascertained study design based on the World Health Organization FFX protocol was undertaken in the UK following the detection of the first case in late January 2020. Household contacts of cases were followed using enhanced surveillance forms to establish whether they developed symptoms of COVID-19, became confirmed cases and their outcomes. We estimated household secondary attack rates (SAR), serial intervals and individual and household basic reproduction numbers. The incubation period was estimated using known point source exposures that resulted in secondary cases.ResultsWe included 233 households with two or more people with 472 contacts. The overall household SAR was 37% (95% CI: 31-43%) with a mean serial interval of 4.67 days, an R0 of 1.85 and a household reproduction number of 2.33. SAR were lower in larger households and highest when the primary case was younger than 18 years. We estimated a mean incubation period of around 4.5 days.ConclusionsRates of COVID-19 household transmission were high in the UK for ages above and under 18 years, emphasising the need for preventative measures in this setting. This study highlights the importance of the FFX protocol in providing early insights on transmission dynamics.


Subject(s)
COVID-19 , Adolescent , Family Characteristics , Humans , Pandemics , SARS-CoV-2 , United Kingdom/epidemiology
13.
JMIR Public Health Surveill ; 8(5): e34438, 2022 05 31.
Article in English | MEDLINE | ID: covidwho-1834169

ABSTRACT

BACKGROUND: The Surveillance Outbreak Response Management and Analysis System (SORMAS) contains a management module to support countries in their epidemic response. It consists of the documentation, linkage, and follow-up of cases, contacts, and events. To allow SORMAS users to visualize data, compute essential surveillance indicators, and estimate epidemiological parameters from such network data in real-time, we developed the SORMAS Statistics (SORMAS-Stats) application. OBJECTIVE: This study aims to describe the essential visualizations, surveillance indicators, and epidemiological parameters implemented in the SORMAS-Stats application and illustrate the application of SORMAS-Stats in response to the COVID-19 outbreak. METHODS: Based on findings from a rapid review and SORMAS user requests, we included the following visualization and estimation of parameters in SORMAS-Stats: transmission network diagram, serial interval (SI), time-varying reproduction number R(t), dispersion parameter k, and additional surveillance indicators presented in graphs and tables. We estimated SI by fitting lognormal, gamma, and Weibull distributions to the observed distribution of the number of days between symptom onset dates of infector-infectee pairs. We estimated k by fitting a negative binomial distribution to the observed number of infectees per infector. Furthermore, we applied the Markov Chain Monte Carlo approach and estimated R(t) using the incidence data and the observed SI computed from the transmission network data. RESULTS: Using COVID-19 contact-tracing data of confirmed cases reported between July 31 and October 29, 2021, in the Bourgogne-Franche-Comté region of France, we constructed a network diagram containing 63,570 nodes. The network comprises 1.75% (1115/63,570) events, 19.59% (12,452/63,570) case persons, and 78.66% (50,003/63,570) exposed persons, including 1238 infector-infectee pairs and 3860 transmission chains with 24.69% (953/3860) having events as the index infector. The distribution with the best fit to the observed SI data was a lognormal distribution with a mean of 4.30 (95% CI 4.09-4.51) days. We estimated a dispersion parameter k of 21.11 (95% CI 7.57-34.66) and an effective reproduction number R of 0.9 (95% CI 0.58-0.60). The weekly estimated R(t) values ranged from 0.80 to 1.61. CONCLUSIONS: We provide an application for real-time estimation of epidemiological parameters, which is essential for informing outbreak response strategies. The estimates are commensurate with findings from previous studies. The SORMAS-Stats application could greatly assist public health authorities in the regions using SORMAS or similar tools by providing extensive visualizations and computation of surveillance indicators.


Subject(s)
COVID-19 , Communicable Diseases , Basic Reproduction Number , COVID-19/epidemiology , Communicable Diseases/epidemiology , Contact Tracing , Disease Outbreaks , Humans
15.
Chinese Journal of Disease Control and Prevention ; 26(1):112-115, 2022.
Article in Chinese | EMBASE | ID: covidwho-1771919

ABSTRACT

Objective An epidemic of COVID-19 caused by an imported Delta variant strain in Guangzhou was investigated, and the transmission chain, transmission characteristics and infection of each case were analyzed, so as to provide a theoretical basis for predicting disease development and epidemic prevention and control. Methods By collecting the information released by Guangzhou government, the confirmed cases with a clear transmission chain were selected, and the infectious disease indicators such as serial interval (SI), basic reproduction number (Rq) and time-dependent reproduction number (Rt) were calculated to analyze the epidemiological characteristics. Results From May 21 to June 20, 2021, a total of 144 cases of indigenous COVID-19 were confirmed in Guangzhou, among which 67 pairs of cases with a clear transmission chain were selected. SI was calculated to follow the Gamma distribution, with a mean of 4. 27 d and a standard deviation of 2.65 d. Rq = 3. 18 (95% CI: 2. 1974.428), and Rt showed an obvious decreasing trend over time. On June 10, Rt = 0.97 (95% CI: 0. 751 -1. 214), which was lower than 1. Since then Rt had been less than 1, and it got smaller and smaller over time. Conclusion In this COVID-19 epidemic, the SI was shorter and the Rq was larger, which indicated that the Delta variant strain had a faster transmission rate and stronger transmissibility than the COVID-19 infected in Wuhan in 2020.

16.
Int J Environ Res Public Health ; 19(7)2022 03 29.
Article in English | MEDLINE | ID: covidwho-1771197

ABSTRACT

The characteristics of COVID-19 have evolved at an accelerated rate over the last two years since the first SARS-CoV-2 case was discovered in December 2019. This evolution is due to the complex interplay among virus, humans, vaccines, and environments, which makes the elucidation of the clinical and epidemiological characteristics of COVID-19 essential to assess ongoing policy responses. In this study, we carry out an extensive retrospective analysis on infection clusters of COVID-19 in South Korea from January 2020 to September 2021 and uncover important clinical and social factors associated with age and regional patterns through the sophisticated large-scale epidemiological investigation using the data provided by the Korea Disease Control and Prevention Agency (KDCA). Epidemiological data of COVID-19 include daily confirmed cases, gender, age, city of residence, date of symptom onset, date of diagnosis, and route of infection. We divide the time span into six major periods based on the characteristics of COVID-19 according to various events such as the rise of new variants, vaccine rollout, change of social distancing levels, and other intervention measures. We explore key features of COVID-19 such as the relationship among unlinked, asymptomatic, and confirmed cases, serial intervals, infector-infectee interactions, and age/region-specific variations. Our results highlight the significant impact of temporal evolution of interventions implemented in South Korea on the characteristics of COVID-19 transmission, in particular, that of a high level of vaccination coverage in the senior-aged group on the dramatic reduction of confirmed cases.


Subject(s)
COVID-19 , Aged , COVID-19/epidemiology , Humans , Policy , Republic of Korea/epidemiology , Retrospective Studies , SARS-CoV-2
17.
Viruses ; 14(3)2022 03 04.
Article in English | MEDLINE | ID: covidwho-1732240

ABSTRACT

The omicron variant (B.1.1.529) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the predominant variant in South Korea from late January 2022. In this study, we aimed to report the early estimates of the serial interval distribution and reproduction number to quantify the transmissibility of the omicron variant in South Korea between 25 November 2021 and 31 December 2021. We analyzed 427 local omicron cases and reconstructed 73 transmission pairs. We used a maximum likelihood estimation to assess serial interval distribution from transmission pair data and reproduction numbers from 74 local cases in the first local outbreak. We estimated that the mean serial interval was 3.78 (standard deviation, 0.76) days, which was significantly shorter in child infectors (3.0 days) compared to adult infectors (5.0 days) (p < 0.01). We estimated the mean reproduction number was 1.72 (95% CrI, 1.60-1.85) for the omicron variant during the first local outbreak. Strict adherence to public health measures, particularly in children, should be in place to reduce the transmission risk of the highly transmissible omicron variant in the community.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Child , Humans , Reproduction , Republic of Korea/epidemiology , SARS-CoV-2/genetics
18.
Epidemics ; 38: 100545, 2022 03.
Article in English | MEDLINE | ID: covidwho-1676725

ABSTRACT

R(t), the actual average number of secondary cases per primary case at calendar time t, is epidemiologically useful in assessing transmission dynamics in a population with varying susceptibility levels. However, a technical limitation of existing methods of estimating R(t) is the reliance on the daily number of cases with illness onset and the distribution of the serial interval, although the estimator of R(t) should be calculated as the ratio of newly infected cases at time t to the total number of potentially infectious people at the same time. Using historical data of a smallpox outbreak in Tokyo City, Japan, approximately 100 years ago, we propose a new method to compute R(t) that can be estimated using information on illness onset. Our method decomposes the mechanism of transmission into two distinct pieces of information: the frequency of secondary transmission relative to disease age and the probability density function of the incubation period. Employing a piecewise constant model, our maximum likelihood estimates of R(t) dropped below unity (0.6; 95% confidence interval: 0.5-0.7) for the period from Day 64 to Day 79, indicating that the epidemic was under control in this period. R(t) was continuously below one through the remaining days. The model prediction captured the overall observed pattern of the epidemic well. Our method is appropriate for acute infectious diseases other than smallpox for which variations in infectivity relative to disease age should be considered to correctly estimate the transmission potential, such as the ongoing global epidemic of coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Epidemics , Smallpox , Disease Outbreaks , Humans , Smallpox/epidemiology , Tokyo/epidemiology
19.
Int J Environ Res Public Health ; 19(3)2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1643605

ABSTRACT

Few studies have assessed incubation periods of the severe acute respiratory syndrome coronavirus 2 Delta variant. This study aimed to elucidate the transmission dynamics, especially the incubation period, for the Delta variant compared with non-Delta strains. We studied unvaccinated coronavirus disease 2019 patients with definite single exposure date from August 2020 to September 2021 in Japan. The incubation periods were calculated and compared by Mann-Whitney U test for Delta (with L452R mutation) and non-Delta cases. We estimated mean and percentiles of incubation period by fitting parametric distribution to data in the Bayesian statistical framework. We enrolled 214 patients (121 Delta and 103 non-Delta cases) with one specific date of exposure to the virus. The mean incubation period was 3.7 days and 4.9 days for Delta and non-Delta cases, respectively (p-value = 0.000). When lognormal distributions were fitted, the estimated mean incubation periods were 3.7 (95% credible interval (CI) 3.4-4.0) and 5.0 (95% CI 4.5-5.6) days for Delta and non-Delta cases, respectively. The estimated 97.5th percentile of incubation period was 6.9 (95% CI 5.9-8.0) days and 10.4 (95% CI 8.6-12.7) days for Delta and non-Delta cases, respectively. Unvaccinated Delta variant cases had shorter incubation periods than non-Delta variant cases.


Subject(s)
COVID-19 , Infectious Disease Incubation Period , Bayes Theorem , Humans , Japan/epidemiology , SARS-CoV-2 , Vaccination/statistics & numerical data
20.
Stat Methods Med Res ; 31(9): 1686-1703, 2022 09.
Article in English | MEDLINE | ID: covidwho-1582664

ABSTRACT

The serial interval of an infectious disease, commonly interpreted as the time between the onset of symptoms in sequentially infected individuals within a chain of transmission, is a key epidemiological quantity involved in estimating the reproduction number. The serial interval is closely related to other key quantities, including the incubation period, the generation interval (the time between sequential infections), and time delays between infection and the observations associated with monitoring an outbreak such as confirmed cases, hospital admissions, and deaths. Estimates of these quantities are often based on small data sets from early contact tracing and are subject to considerable uncertainty, which is especially true for early coronavirus disease 2019 data. In this paper, we estimate these key quantities in the context of coronavirus disease 2019 for the UK, including a meta-analysis of early estimates of the serial interval. We estimate distributions for the serial interval with a mean of 5.9 (95% CI 5.2; 6.7) and SD 4.1 (95% CI 3.8; 4.7) days (empirical distribution), the generation interval with a mean of 4.9 (95% CI 4.2; 5.5) and SD 2.0 (95% CI 0.5; 3.2) days (fitted gamma distribution), and the incubation period with a mean 5.2 (95% CI 4.9; 5.5) and SD 5.5 (95% CI 5.1; 5.9) days (fitted log-normal distribution). We quantify the impact of the uncertainty surrounding the serial interval, generation interval, incubation period, and time delays, on the subsequent estimation of the reproduction number, when pragmatic and more formal approaches are taken. These estimates place empirical bounds on the estimates of most relevant model parameters and are expected to contribute to modeling coronavirus disease 2019 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Humans , Reproduction , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL